

Introduction to the Infrared

- Near-IR: 1 to 2.5 microns
 - Silicon cutoff to thermal rise
 - Sky brightness dominated by OH emission
- Mid-IR: 3.0 to 20 microns
 - Thermal rise to atmospheric cutoff
 - Sky brightness dominated by thermal emission of air and telescope
- Far-IR: 20 to 350 microns
 - Atmospheric cutoff to sub-mm window opening
 - Only accessible from space

- The sky is bright and variable
- It's never "photometric"
- The air and telescope are glowing
- You're doing what the pros were doing 30 years ago

- The sky is bright and variable
 - H-band sky brightness is dominated by OH airglow
 - OH emission varies with time and water vapor column
 - Sky brightness beyond 2.5 microns is dominated by thermal emission.

- It's never "photometric"
 - Water vapor is a major source of opacity
 - "Clouds" of water vapor drift through telescope beam

- The air and telescope are glowing
 - The air, telescope, and surroundings are at 273 K
 - 273 K blackbody peaks around 10 microns

Doing What the Pros Were Doing 30 Years Ago

Pros

- Better detectors and computers
- Thermoelectric cooling
- It's a previously solved problem

Cons

- Small budget
- Lack of access to facilities and engineering
- Non-optimal site

The Solution

- Infrared optimized telescope
- Instrumentation
- Observing technique

IR Optimized Telescope

- Small, undersized secondary
- 'Button' in middle of secondary
- Low-emissivity coatings

IR Optimized Telescope

- Small, undersized secondary
- 'Button' in middle of secondary
- Low-emissivity coatings

IR Instrumentation

- IR-sensitive detector (PbS, GaAs, InAt, HgCdTe)
- Cold stop
- Special glass types (typically salts)

Observing Technique

- Chop/Nod
 - Chopping: Fast-offsets to sky (2-4 Hz)
 - Nodding is about once per minute
- Dithering: Taking images at different pointings
 - Make good flats
 - Compensates for poor cosmetics
 - Follow changes in sky brightness

Recommendations (1)

- Stick with the near-IR first
 - It gets harder really fast
 - Sky and telescope get brighter
 - Water vapor is more of a problem
 - Targets tend to be fainter
 - Need to cool instrument and detector more
 - Need better site at longer wavelengths

Recommendations (2)

- Dichroic-fed optical guide camera
 - You can usually see your target in the optical easier
 - You can easily see if you're on target when you're getting no IR signal
 - Dichroic may need to be cold
- Dither the telescope

Recommendations (3)

- Cool the detector
 - See what can be done with TEC
 - Getting LN2 to a remote site is a pain
 - Dealing with LHe is a big pain
 - LHe is very expensive
- Avoid a chopping mirror
 - Dynamic optical systems are hard to get working

Recommendations (4)

- Cold Stop
 - Image entrance pupil onto a cold stop
 - Prevent detector from seeing thermal glow of telescope, ground, surroundings
- Filters beyond H-band need to be cold
 - They're opaque over most of detector's bandwidth, thus high emissivity