#### LIGHT BUCKET ASTRONOMY

Efforts to Improve the Signal-to-Noise Ratio of Program Object Measures

**Bruce Holenstein and Russ Genet** 

2010-2011 Alt-Az Initiative Hawaii Conference on Light Bucket Astronomy



#### Agenda

- Regions of Excellence for Light Buckets
- Signal-to-Noise-Ratio Dependencies
- Light Buckets Comparisons to Conventional Scopes
- Light Bucket Arrays
- Impact of Tracking Errors

# Regions of Excellence for Light Buckets

- Light bucket astronomy is advantageous where the sky background is a small or nearly negligible source of noise.
  - The object being observed is very bright
  - The integration times are very short
  - Scintillation dominates
  - The bandwidth is very narrow or the light is spread out as in spectroscopy
  - Noise from the detector is dominant (as it can be in the near infrared).

# Signal-to-Noise-Ratio Dependencies

 How do the factors affect the Signal-to-Noise-Ratio (SNR) of program measures?

$$SNR = \frac{N_{Star+Sky} - N_{Sky}}{\sqrt{N_{Star+Sky} + N_{Sky} + N_{Detector} + S^2}}$$

where *Ns* are counts and *S* models atmospheric scintillation

 Various Alt-Az Initiative members are focused on improving each part of the SNR equation

#### Dependency: Sky and Star

- Objective: Increase program object signal, decrease sky
  - Need large, affordable, and portable scopes
- New mirror making technologies
  - Balance needs, e.g. light bucket diaphragm size vs. aberrations
- Mounts & Controllers
  - Alt, az, fov rotation



42-inch pneumatic mirror prototype at Gravic Labs

# Dependency: Scintillation

- Can't increase integration duration
  - Need about 300 fps in visible for lunar occultation diffraction patterns
- Mitigate it
  - Increase objective diameter to a point
    - About 2-meters max.
  - Move to a higher altitude
  - Watch central obstruction size
- Arrays of light bucket scopes (future)

#### Central Obstruction SNR Falloff

Shot noise only (blue), plus extra scintillation due to obstruction (red).



### Light Bucket vs. SCT

- Traditional f/8 SCT, 0.50-m mirror
- Light bucket f/2,1.5-m & f/3, 1.0-m
- Diaphragms -28"&7" vs. 1" on SCT



1.5



#### Light Bucket vs. Newtonian

- Traditional f/3
  Newt., 0.50-m
  mirror
- Light bucket f/2,1.5-m & f/3, 1.0-m
- Diaphragms -28"&7" vs. 7" on Newtonian
- Scintillation at 1000-m, air-mass1.5



#### Arrays – Scintillation Reduction

- Top curve:
   same
   effective
   aperture of
   single mirror
   and array
- Array elements spread out



## Light Bucket Arrays

- 7 LBT arrays vs8-m f/1 scope
  - 2 relative diaphragm diameters (400, 100 vs 40 micron on 8-m)
- Scintillation at 3000-m, air-mass 1.5





#### Light Bucket Array Features

- Reliability. Immediate and independent confirmation of rare, transient events
- Availability. Graceful failure rather than all at once
- Independence. Geographic area avoids clouding out the array
- Transportability. Moveable elements to avoid bad weather or seek advantageous observing locations
- Expandability. Add more array elements later as funds allow.

#### **Tracking Errors**

- Drifting circular detector diaphragm
  - Red flux lost
  - Green flux gained
- Causes a systematic, nonrandom error



### Tracking Errors – Flux Lost



#### Contact

- Emails: <u>bholenstein@gravic.com</u>, <u>russmgenet@aol.com</u>
- Initiative Website www.AltAzInitiative.org
- Yahoo Discussion Group http://groups.yahoo.com/group/AltAzInitiative

#### More details:

The Alt-Az Initiative: Telescope, Mirror, & Instrument Developments, eds. Genet, Johnson, & Wallen, (Payson, AZ: Collins Foundation Press) 2010