LIGHT BUCKET ASTRONOMY

Aberration Theory and Prototype Mirror Experiments

Bruce Holenstein, Rich Mitchell, Dylan Holenstein

2010-2011 Alt-Az Initiative Hawaii Conference on Light Bucket Astronomy

Agenda

- Some Light Bucket Aberration Theory
- Gravic Labs Pneumatic Mirror Prototypes
- Early Starstone Evaluation
- Other Mirrors

Background & Motivation I

- Pneumatic mirrors for astronomy
 - Study started in 1991 at the U. of Pennsylvania and continued there through 1998
 - Resurrected at Gravic in 2008 for ground-based light buckets
 - Science interests –
 Intensity interferometry,
 occultations, high speed
 aperture photometry

Gravic 42" on IPI393 GEM

Background & Motivation II

- Tools were needed to characterize progress and failure in our work
 - Traditional quantification such as P-V and Strehl Ratio were not helpful
 - "Highly aberrated" to us signifies many waves of caustic, ray-crossing aberrations

Pool caustics

Circle of Confusion

- Circle of Confusion = blur spot at focal plane
- Diaphragm = circular isolator before the detector

Aberration Characterization I

- P-V and Strehl Ratio are the same in the figure
- But, the RMS local slope gradient is very different

Aberration Characterization II

- Two aberration types considered analytically
 - Random surface height variations
 - Random local slope problems

Aberration Characterization III

- Zone-sampling with a Right-angle Bath Interferometer
- Analysis produces
 Zernike
 representation of
 wavefront, W(ρ,θ)
- Stitching and statistical combination of sample zone results

Right-Angle Bath Interferometer

Aberration Characterization IV

Diameter of CoC from surface height flaws:

$$d_{CoC,surface\ height}(n) \approx 0.5n\sigma/f$$

Diameter of CoC from local slope flaws:

$$d_{CoC,local\,slope}(n') \approx 4n' F |\Delta \phi|_{rms}$$

where f is the focal ratio, F is the focal length, and the n and n' multipliers determine the encircled flux fraction

Aberration Characterization V

• Zernike wavefront representation, $W(\rho,\theta)$, is used for the estimation of σ and $|\Delta \varphi|_{\rm rms}$

$$W(\rho,\theta) = \sum_{j} a_{j} Z_{j}(\rho,\theta)$$

$$\sigma_W^2 = \langle W^2(\rho, \theta) \rangle - \langle W(\rho, \theta) \rangle^2 = \sum_{i=2}^{\infty} a_i^2$$

$$\nabla W(\rho,\theta) = \frac{\delta W}{\delta \rho} e_{\rho} + \frac{1}{\rho} \frac{\delta W}{\delta \theta} e_{\theta}$$

$$|\Delta\phi|_{rms} = \frac{\|\nabla W\|_{rms}}{D/2}$$

Aberration Characterization VI

 Calculation of the rms wavefront gradient norm from Zernike coefficients (Southwell 1982, Braat 1987)

$$\langle \| \nabla W \|^2 \rangle = \sum_{l=1}^{\infty} 8l \left[\sum_{i=l}^{\infty} \sqrt{2i+1} a_{2i}^0 \right]^2 + \\ + \sum_{m=1}^{\infty} \left\{ m \left[\sum_{i=0}^{\infty} \sqrt{2(2i+m+1)} a_{2i+m}^m \right]^2 + \\ + \sum_{l=1}^{\infty} 2(2l+m) \left[\sum_{i=l}^{\infty} \sqrt{2(2i+m+1)} a_{2i+m}^m \right]^2 \right\}$$

FringeXP (Rowe 2003) coefficient form

$$\|\nabla W\|_{rms} \approx \left[Z_1^2 + 2Z_1Z_6 + Z_2^2 + 2Z_2Z_7 + 8Z_3^2 + 16Z_3Z_8 + 2Z_4^2 + 2Z_5^2 + 7Z_6^2 + 7Z_7^2 + 24Z_8^2 + 3Z_9^2 + 3Z_{10}^2\right]^{\frac{1}{2}}.$$

Southwell, W. H. 1982, *Proc. SPIE*, **365**, pp. 97-104 Braat, J. 1987, *J. Opt. Soc. Am.*, **A4**, pp. 643-650

Aberration Characterization VII

How much aberration is permissible?

For surface height flaws, the **rms wavefront error** must not exceed

$$\sigma_{\text{limit}} \approx 2 f d_{Diaphragm} / n$$

An f/2 mirror with 1.3-mm rms smooth surface height aberrations (i.e., 2600 waves of 500-nm light) feeding a 1-mm diameter diaphragm encircles 99.7% of the flux (n=3).

Aberration Characterization VIII

For local slope flaws, the **rms wavefront gradient norm** must not exceed

$$\|\nabla W\|_{rms,limit} \approx \frac{d_{Diaphragm}}{8n'f}$$

An f/2 mirror with a 1-mm diaphragm tolerates 42-waves (500-nm) rms wavefront gradient norm aberration and still encircles 98.9% of the flux (n'=3).

Aberration Characterization IX

Solving for the spot size gives a useful rule of thumb:

FWHM spot size (arc sec) =
$$2.35 \times 2 |\Delta \varphi|_{rms}$$

= $2.35 \times 4 ||\nabla W||_{rms}/D \approx 10^6 E/D$

where *E* is the "wavefront error," *D* is the mirror diameter in the same units.

e.g., 2 waves= 10^{-6} -m on 1-m mirror ~ 2" FWHM Note: *E* depends on the type of aberration (above holds for when rms grad norm = 0.5 (P-V), e.g., for tilt).

Common Aberration Gradients

Zernike Gradients					
			"E"	RMS Wavefront Gradient	Ratio
j	Туре	Polynomial	P-V	$\ \nabla W_j\ _{rms}$	RMS Grad/E
1	Piston	1	a_1	0	0
2	X Axis Tilt	2ρ cosθ	$4a_2$	2 a ₂	0.5
3	Y Axis Tilt	2ρ sinθ	$\frac{4a_3}{2\sqrt{3}}a_4$	$\frac{2 a_3}{2\sqrt{6} a_4}$	0.5
4	Defocus (power)	$\sqrt{3}(2\rho^2-1)$	$2\sqrt{3} a_4$	$2\sqrt{6} a_4$	1.4
5	45° Astigmatism	$\sqrt{6}\rho^2 \sin 2\theta$	$2\sqrt{6} a_5$	$2\sqrt{3} a_{5}$	0.7
6	0° Astigmatism	$\sqrt{6}\rho^2\cos 2\theta$	$2\sqrt{6} a_6$	$2\sqrt{3} a_6$	0.7
7	Y Coma	$2\sqrt{2}(3\rho^2 - 2\rho)\sin\theta$	$\frac{16\sqrt{2}}{3}a_7$	$2\sqrt{14} a_7$	1.0
8	X Coma	$2\sqrt{2}(3\rho^2 - 2\rho)cos\theta$	$\frac{16\sqrt{2}}{3}a_8$	$2\sqrt{14} a_8$	1.0
9	30° Trefoil	$2\sqrt{2}\rho^3 \sin 3\theta$	$4\sqrt{2} a_9$	$4\sqrt{6} a_9$	1.7
10	0º Trefoil	$2\sqrt{2}\rho^3 \cos 3\theta$	4√2 ~	$4\sqrt{6} a_{10}$	1.7
11	Principal Spherical	$\sqrt{5}(6\rho^4 - 6\rho^2 + 1)$	$\frac{3\sqrt{5}}{2}a_{11}$	$2\sqrt{30} \ a_{11}$	3.2

Note: Malacara (2007) normalization

Figures of Merit I

How do aberrations affect the Signal-to-Noise-Ratio (SNR)?

$$SNR = \frac{N_{Star+Sky} - N_{Sky}}{\sqrt{N_{Star+Sky} + N_{Sky} + N_{Detector} + S^2}}$$

where *Ns* are counts and *S* models atmospheric scintillation

Figures of merit follow for various mirror situations

Figures of Merit II

- Randomsurfaceheightaberrations
- Bright point source
- f/1.9, 1.6-mmirror
- Various diaphragms
- Visible light

Figures of Merit III

- Local slope

 aberrations : 10
 waves rms
 gradient norm
- 4 program star cases; V = +21/ arcsec squared background
- f/1.9, 1.6-mmirror
- Scintillation 1000-m, airmass 1.5

Figures of Merit IV

CoC size as a function of f-ratio. Spherical, 2500 waves rms surface height, and 10 waves rms gradient norm local slope aberrations are depicted.

Light Bucket Mirror Conclusions

We used a statistical approach for light bucket mirror quality analysis: rms local surface height and wavefront gradient norm values. Some conclusions:

- When possible, limit the diaphragm size to improve the SNR, but not so much as to cause significant tracking errors
- For faint objects peak SNR occurs when diaphragms smaller than the size needed to collect 99% of the flux are used
- Light bucket mirrors excel if the program object is bright in comparison to the background

Light Bucket Mirror Prototype

- 7" pneumatic mirror
- Complex interferograms

Light Bucket Mirror Prototype II

- 12" pneumatic mirror
- Vega (w/no correction)

Light Bucket Mirror Prototype III

Our first 1-meter light bucket at Gravic...

Light Bucket Mirror Prototype IV

- 1.6-m mirror scope design
 - Forged AL mirror cell
 - Plans on hold pending better mirror substrates and portable designs

Starstone evaluation I

Mirror ooo1A 8" f/2.25

Starstone evaluation II

Starstone evaluation III

Cooling after 30 sec. warming with heat gun

Starstone evaluation IV

- Corrector used— 50-mm projection lens
- Hubble optics 5-star flashlight 50 to 250 micron
 - "stars" @11-m
- 180" no correction

25" – with correction

Other Potential LBT Mirrors

- Edmund 24" parabolic
- Aluminum o.o4"
- f/o.25
- 1.5" central hole
- Low reflectivity (not "precision polished")
- We are eager to evaluate other mirrors

In Memoriam Robert H. Koch 1929-2010

Contact

- Email: <u>bholenstein@gravic.com</u>
- Initiative Website www.AltAzInitiative.org
- Yahoo Discussion Group http://groups.yahoo.com/group/AltAzInitiative

More details:

The Alt-Az Initiative: Telescope, Mirror, & Instrument Developments, eds. Genet, Johnson, & Wallen, (Payson, AZ: Collins Foundation Press) 2010